2 research outputs found

    Wet granulation of pharmaceutical excipient in fluidized bed

    Get PDF
    Ovim istraživanjem sagledano je mokro granuliranje mikrokristalne celuloze u fluidiziranom sloju s raspršivanjem kao nužan procesni korak u osiguravanju željene funkcionalnosti mješavine za tabletiranje. Dodatne ulazne struje materijala u procesu su zrak i vezivo, otopina polivinilpirolidona čiji je kolektiv kapljica dodavan različitim geometrijama raspršivanja. Studij fenomena okrupnjavanja u laboratorijskom mjerilu usmjeren je k pronalaženju uvjeta provedbe procesa, geometrije raspršivanja i svojstava ulaznih struja materijala koji će sinergističkim djelovanjem upravljati mikro- i mezorazinskim događajima na povoljan i željeni način te time rezultirati kolektivom postojanih okrupnjenih jedinki, granula mikrokristalne celuloze. Detektirane promjene svojstva kolektiva jedinki, raspodjele veličina čestica s vremenom granuliranja ukazuju na odmak fizičke pretvorbe mikrokristalne celuloze u procesu granuliranja. Proces fizičke pretvorbe mikrokristalne celuloze modeliran je mehanističkim pristupom, primjenom populacijske bilance. Pristup modeliranja populacijskom bilancom u ovome radu podrazumijeva ispitivanje mogućnosti primjene 1-D populacijske bilance u diskretiziranom obliku te Size-Independent Kernel (SIK) modela koalescencije u predviđanju stvarnih promjena u svojstvu partikulskog sustava (raspodjeli veličina čestica) tijekom procesa fizičke pretvorbe tvari. Primijenjeni pristup ukazuje u određenoj mjeri na zastupljenost pojedinih mehanizama u procesu granuliranja. Metodom optimizacije, očitovanom u minimiziranju ukupne sume kvadrata odstupanja, procijenjen je karakterističan procesni parametar, konstanta brzine koalescencije. Time je kvantificirana kinetika fizičke pretvorbe mikrokristalne celuloze u stohastičkom okruženju fluidiziranog sloja.With this study, wet fluid-bed spray granulation of microcrystalline cellulose (MCC) is scrutinized as an essential process path for achieving required functionality of a compression mix. Additional inlet process streams are air and binder, solution of polyvinylpyrrolidone whose droplet population is added using various spraying geometries. Study of the enlargement phenomenon in a lab-scale is focused towards detection of process conditions, spraying geometry and formulation properties that will synergically drive micro- and meso-scale events in a favourable and desired way and therewith result in a collective of stable enlarged entities, MCC granules. Detected temporal changes of the property of a group of entities, particle size distribution (PSD) point to the progress of physical conversion of microcrystalline cellulose within granulation process. Process of physical conversion of microcrystalline cellulose is modelled with mechanistic approach using population balance. Such modelling approach in this paper implies testing the applicability of a 1-D discretized population balance with Size-Independent Kernel (SIK) coalescence model for simulating real temporal changes of the property of MCC particulate system (particle size distribution) during complex transformation path of powder. Used approach might indicate the contributions of underlying mechanisms in the net granulation process and identify the dominant granulation mechanism as well. Optimization method that connotes minimizing the overall sum of squared errors is used for estimation of characteristic process parameter, coalescence rate constant. Thus, kinetic of physical conversion of MCC powder in a stochastic fluid-bed environment is quantified

    Wet granulation of pharmaceutical excipient in fluidized bed

    No full text
    Ovim istraživanjem sagledano je mokro granuliranje mikrokristalne celuloze u fluidiziranom sloju s raspršivanjem kao nužan procesni korak u osiguravanju željene funkcionalnosti mješavine za tabletiranje. Dodatne ulazne struje materijala u procesu su zrak i vezivo, otopina polivinilpirolidona čiji je kolektiv kapljica dodavan različitim geometrijama raspršivanja. Studij fenomena okrupnjavanja u laboratorijskom mjerilu usmjeren je k pronalaženju uvjeta provedbe procesa, geometrije raspršivanja i svojstava ulaznih struja materijala koji će sinergističkim djelovanjem upravljati mikro- i mezorazinskim događajima na povoljan i željeni način te time rezultirati kolektivom postojanih okrupnjenih jedinki, granula mikrokristalne celuloze. Detektirane promjene svojstva kolektiva jedinki, raspodjele veličina čestica s vremenom granuliranja ukazuju na odmak fizičke pretvorbe mikrokristalne celuloze u procesu granuliranja. Proces fizičke pretvorbe mikrokristalne celuloze modeliran je mehanističkim pristupom, primjenom populacijske bilance. Pristup modeliranja populacijskom bilancom u ovome radu podrazumijeva ispitivanje mogućnosti primjene 1-D populacijske bilance u diskretiziranom obliku te Size-Independent Kernel (SIK) modela koalescencije u predviđanju stvarnih promjena u svojstvu partikulskog sustava (raspodjeli veličina čestica) tijekom procesa fizičke pretvorbe tvari. Primijenjeni pristup ukazuje u određenoj mjeri na zastupljenost pojedinih mehanizama u procesu granuliranja. Metodom optimizacije, očitovanom u minimiziranju ukupne sume kvadrata odstupanja, procijenjen je karakterističan procesni parametar, konstanta brzine koalescencije. Time je kvantificirana kinetika fizičke pretvorbe mikrokristalne celuloze u stohastičkom okruženju fluidiziranog sloja.With this study, wet fluid-bed spray granulation of microcrystalline cellulose (MCC) is scrutinized as an essential process path for achieving required functionality of a compression mix. Additional inlet process streams are air and binder, solution of polyvinylpyrrolidone whose droplet population is added using various spraying geometries. Study of the enlargement phenomenon in a lab-scale is focused towards detection of process conditions, spraying geometry and formulation properties that will synergically drive micro- and meso-scale events in a favourable and desired way and therewith result in a collective of stable enlarged entities, MCC granules. Detected temporal changes of the property of a group of entities, particle size distribution (PSD) point to the progress of physical conversion of microcrystalline cellulose within granulation process. Process of physical conversion of microcrystalline cellulose is modelled with mechanistic approach using population balance. Such modelling approach in this paper implies testing the applicability of a 1-D discretized population balance with Size-Independent Kernel (SIK) coalescence model for simulating real temporal changes of the property of MCC particulate system (particle size distribution) during complex transformation path of powder. Used approach might indicate the contributions of underlying mechanisms in the net granulation process and identify the dominant granulation mechanism as well. Optimization method that connotes minimizing the overall sum of squared errors is used for estimation of characteristic process parameter, coalescence rate constant. Thus, kinetic of physical conversion of MCC powder in a stochastic fluid-bed environment is quantified
    corecore